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1 Set

1.1 Basic Notation

Set is a collection of elements.
There are two common ways to write out the composition of the set. For example, let A

denote a set, if it is a very simple (or, in a math jargon, “trivial”) set, we can directly write
down all the elements and use curly bracket to surround them, e.g.:

A = {1, 2, 3, 4}

If it is a rather complicated set (it could include infinite number of things!), we usually write
down the general rule that determines what is inside, and put a vertical bar “|” in front of it
e.g.

A = {x|x is an integer and x > 5}

Let A denote a set, and x denote something. x could be either “included” in set A or not.
In mathematical notations, we use ∈ and /∈ to respectively denote that relationship i.e.

x ∈(or /∈)A

x can be anything, even a set.
Let A and B both be sets. A could be a subset of B or not. Being a subset means that

for any element included in A, it is also included in B.

A ⊆ B ⇔ for any x ∈ A, x ∈ B
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Trivially, if A is a subset of B and B is a subset of A, A and B must be equal:

A ⊆ B and B ⊆ A ⇔ A = B

1.2 Logic

Note that we use arrow connects two statements, which is quite intuitive in that S1 ⇒ S2

means that we can derive S2 from S1, or “if S1 holds, S2 also holds”. Note that this not
necessarily mean the reverse direction is true. For example,

x = 5 ⇒ x2 = 25; x2 = 25 ≠⇒ x = 5

We can also describe this as S1 is the sufficient condition for S2, or S2 is the necessary
condition for S1. Both terms are very useful:

1. Sometimes, we prove S2 by proving a “stronger” statement S1.

2. Sometimes, we want to find things that hold under S1, but there are too many candi-
dates, then we can firstly verify whether these candidates satisfy the statement S1 to
decrease the number of candidates and save our efforts.

And a bi-direction arrow means the two statements are “equivalent”, or S1 is the “sufficient
and necessary condition” of S2 (and vice versa). We usually use “if and only if” (or iff) to
denote this relationship.

1.3 Special Set

There are some sets of numbers that are frequently used and denoted with special notations
as below:

1. Z denotes the set of all the integers, and Z+ or N denotes the set of all the positive
integers.

2. Q denotes the set of rational numbers i.e. the numbers that could be denoted by a ratio
of two integers.

3. R denotes the set of real numbers, and R+ denotes the set of all the positive integers.
There are also imaginary numbers outside of R, but those will not be studied in this
course.
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4. [a, b] denotes the set of real numbers that are between a and b (two end points included)
i.e.

[a, b] = {x ∈ R|a ≤ x ≤ b}

we can also replace either side (or both sides) of the square bracket “[]” to round bracket
“()” and replace “≤” above with a strict “<” sign.

1.4 Operations of Set

There are some methods through which we could generate new set by manipulating some
existing sets. The most two important methods are union and intersection.

1. Union: The union of two sets A and B, denoted A ∪ B, is the set of all elements that
are in A, or in B, or in both. Formally:

A ∪ B = {x | x ∈ A or x ∈ B}

2. Intersection: The intersection of two sets A and B, denoted A ∩ B, is the set of all
elements that are common to both A and B. Formally:

A ∩ B = {x | x ∈ A and x ∈ B}

Another very important operation, while seemingly meaningless so far, is to “multiply”
sets. By doing so, we just obtain a new set whose element is the tuple that includes one
element from each composition set. For example, we have

R2 = R× R = {(x1, x2)|x1 ∈ R and x2 ∈ R}

Intuitively, we can call this set as two-dimensional. Similarly, we can define the N−dimension
set RN for any positive integer N , which will be extremely useful later on.

1.5 Sets with Infinite Elements

Sets can include either finite or infinite elements. When dealing with infinity, things
often diverge from our common sense (and that is precisely why we need more advanced
mathematical tools, and why you’re here!). For finite sets, we can simply use the number of
elements to denote the size of the set. But what about sets with infinite elements? First, we
must ask: does size comparison still make sense for infinite sets? The answer is yes, but the
method of comparison in mathematics can be counterintuitive. A famous statement illustrates
this: ”The set of (positive) even numbers is as large as the set of all natural numbers,” despite
the fact that intuitively, the former seems to contain only half the elements of the latter.

3



To understand this concept better, let’s explore the story of Hilbert’s Hotel, which provides
a vivid demonstration of why these two sets are equal in terms of ”size” (or in professional
terms, cardinality).

Hilbert’s Paradox of the Grand Hotel

Imagine a hotel with infinitely many rooms, all of which are occupied. This hotel is
managed by the brilliant mathematician David Hilbert. One night, a new guest arrives
and asks for a room. In a normal, finite hotel, this would be impossible. But in Hilbert’s
infinite hotel, here’s what happens: Hilbert asks the guest in Room 1 to move to Room
2. The guest in Room 2 moves to Room 3. The guest in Room 3 moves to Room 4. This
process continues indefinitely, with each guest moving to the next room. Room 1 is now
vacant and can accommodate the new guest. Surprisingly, despite starting with a fully
occupied infinite hotel, Hilbert found room for one more guest without evicting anyone!
But the paradox doesn’t stop there. What if an infinite number of new guests arrive,
say, as many as there are natural numbers? Hilbert devises another clever solution: He
asks the guest in Room 1 to move to Room 2; the guest in Room 2 to move to Room 4;
the guest in Room 3 to move to Room 6...... In general, each guest in Room n moves
to Room 2n. Now, all the odd-numbered rooms are empty and can accommodate the
infinite number of new guests!

This paradox illustrates two key points about infinite sets:

1. We can add a finite number to infinity and still have the same size of infinity.

2. We can even add infinity to infinity and still have the same size of infinity.

Hibert’s action also provides us with a way to prove that the two sets are of the same cardinal-
ity: to build a one-to-one mapping. That is, we can find a rule to “align” the elements of two
sets such that for each element in one side, we can find one corresponding element in the other
set, and vice versa. Manipulating this method, we could obtain the following fundamental
results in real analysis:

1. The cardinality of N is the same as Q. We call the set that has the same cardinality as
N “countable”, denoted by ℵ0.

2. The cardinality of R is larger than N. We call the set that has larger cardinality than
N “uncountable”, and we denote the cardinality of R by ℵ1.

3. The cardinality of RN is the same as R.
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1.6 A Short Introduction on Function

In the last section, we informally talk about “one-to-one mapping”, which is a type of
function. You probably already know something about function, which is a bridge between
two sets that assign each element in one set to one element in the other. Formally, let f denote
the function and A and B be the two sets, we denote it by f : A → B. With our previous
definition of “product” of set, it is also convenient to define a function f with two inputs as
f : A1 × A2 → B. Essentially, the output of the function is one element in the set. If the
output of one mapping takes multiple values, the mapping is called “correspondence”.

1.7 Distance and Norm

For most of the time, we work on the set of real numbers R, or vectors or matrices (which
will be introduced shortly) whose entries are real numbers. But “set” only implies what
elements are inside and what are not, and our common sense is far beyond that: for example,
we know how to compare the two elements in one set, we know how to add or multiple
two elements in the set to obtain a new element in the same set...... Advanced math course
usually begins with a set of abstract rules to define these “structures” upon the set. Here we
demonstrate two of the most important concepts: distance and norm.

Definition 1.1 (Distance and Norm). Let X be a set. A distance function or metric on
X is a function d : X ×X → R that satisfies the following properties for all x, y, z ∈ X:

1. Non-negativity: d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

2. Symmetry: d(x, y) = d(y, x).

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

A norm on a vector space V over R is a function ∥ · ∥ : V → R that satisfies the following
properties for all uuu,vvv ∈ V and c ∈ R:

1. Non-negativity: ∥vvv∥ ≥ 0 and ∥vvv∥ = 0 if and only if vvv = 000.

2. Scalar multiplication: ∥cvvv∥ = |c|∥vvv∥.

3. Triangle inequality: ∥uuu+ vvv∥ ≤ ∥uuu∥+ ∥vvv∥.

Example 1.1. For vectors in Rn, the most common norm is the Euclidean norm, defined as:

∥xxx∥2 =
√

x2
1 + x2

2 + · · ·+ x2
n

The corresponding distance induced by this norm, called the Euclidean distance, is:

d(xxx,yyy) = ∥xxx− yyy∥2 =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2
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Usually, when we use the notion of RN , we are referring to the set RN with Euclidean
metrics system, which we call “Euclidean space”. For an element taken from high-dimensional
Euclidean space, we usually use bold lowercase letter e.g.xxx to denote it, and write it as a
“column vector” i.e. to list its elements vertically and circle them with square brackets e.g.

xxx =


x1

x2

...
xN

 . To save space, we could also write it as xxx = [x1, x2, ..., xN ]
T where the superscript

T denotes the transposition of the formation from a row to a column.

Example 1.2. Other common norms include the L1 norm (Manhattan norm) and L∞ norm
(maximum norm):

• L1 norm: ∥xxx∥1 = |x1|+ |x2|+ · · ·+ |xn|

• L∞ norm: ∥xxx∥∞ = max(|x1|, |x2|, . . . , |xn|)

The concepts of distance and norm are very important. For example, almost all econo-
metrics/statistical/machine learning models are aimed at optimizing some metrics between
estimation and observed data. Moreover, only after the distance is defined, can we conve-
niently discuss the concept of convergence, as will be clear in the next section.

2 Linear Algebra

2.1 Vector

Element in high-dimensional space RN (N > 1) is often referred to as “vector”, while
element in one-dimensional space is often called “scalar”. For an element xxx ∈ RN , we have the
following trivial equation:

x1

x2

...
xN

 = x1


1

0
...
0

+ x2


0

1
...
0

+ · · ·+ xN


0

0
...
1


where the right hand side (RHS) has N vectors, each only has i−th entry being 1 and all
the other entries being 0, which we denote as eeei. This trivial equation uncovers a trivial fact:
we could express xxx as a linear combination of N elements in RN . Here “linear combination”
means a series of operations that can only take one of the following forms: 1) addition; 2)
multiplication with a scalar i.e. timing all entries by the same scalar. Clearly {eeei}Ni=1 is a
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decent set of vectors as it could be used to construct anything in the space. We call such set
of N vectors the “basis” of RN . Basis is not unique, as is indicated in the following example:

Exercise 2.1. Prove that [1, 2]T and [2, 1]T is also a basis of R2.

Could any N vectors form a basis? We can easily answer this question by replacing [2, 1]T

in the last example with [2, 4]T . Intuitively, we can see that the original pair of vectors could
be “stretched” to match any vector on the plane. But the new pair, [1, 2]T , [2, 4]T lies on one
line. And they cannot be combined to reach anything outside of the line.

We call such case as “linear dependency”. Note that if the two vectors are located on the
same direction, we could find a scalar λ such that xxx1 = λxxx2.

Then, could any N vectors, any two of which do not lie on the same line, form a basis?
The answer is “yes” when N = 2, but “no” when N >= 3. To see this, consider the following
set:

{
[1, 1, 1]T , [1,−1, 1]T , [2, 0, 2]T

}
. As the third vector is a linear combination of the first

two, it also lies on the two-dimensional plane “stretched” by the first two vectors. As they lie
on the same plane, we cannot obtain any vectors outside of the plane. We extend the above
result to the general case. Firstly, we define linear dependency:

Definition 2.1 (Linear Independence). A set of vectors {vvv1, vvv2, . . . , vvvk} ⊆ RN is said to be
linearly independent if the only solution to the equation

c1vvv1 + c2vvv2 + · · ·+ ckvvvk = 000

is c1 = c2 = · · · = ck = 0.

Then, we have the following intuitive result:

1. For N-dimensional space RN , there could be at most N vectors to be linearly independent
in one set. We call any set of N linearly independent a “basis” for space RN .

2. The set of N vectors in RN is a basis for RN if and only if any element in RN could be
represented as a linear combination of them.

Note that for a basis {vvv1, vvv2, . . . , vvvk}, the process of finding the proper linear combina-
tion for an element is exactly the process of solving a system of N linear equations with N

unknowns, which is another great way to lead into the content of linear algebra, though not
introduced here. Intuitively, whether the vector set is a basis is equivalent to whether they
could be ”stretched” to create the whole space. We can also quantify this operation by looking
at what is the dimension the vectors could stretch, which leads to the following definitions.

Definition 2.2 (Dimension). The dimension of a vector space V is the number of vectors in
any basis of V . In other words, if {vvv1, vvv2, . . . , vvvk} is a basis for V , then the dimension of V ,
denoted as dim(V ), is k.
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We can extend this concept to a set of vectors and the linear space generated by them.

Definition 2.3 (Linear Span). Given a set of vectors {vvv1, vvv2, . . . , vvvm} in a vector space V ,
the linear span (or simply span) of these vectors, denoted as span {vvv1, vvv2, . . . , vvvm}, is the set
of all linear combinations of vvv1, vvv2, . . . , vvvm. Formally,

span {vvv1, vvv2, . . . , vvvm} = {a1vvv1 + a2vvv2 + · · ·+ amvvvm | a1, a2, . . . , am ∈ R} .

This span is a subspace of V .

Definition 2.4 (Dimension of a Set of Vectors). The dimension of a set of vectors {vvv1, vvv2, . . . , vvvm}
is the dimension of the linear span of these vectors. If the vectors are linearly independent
and span a subspace W , then the dimension of the set of vectors is the number of vectors in
the set, i.e., dim(W ).

Using these definitions, we can see that the dimension of a vector space or the linear span of
a set of vectors provides a measure of how many directions in the space can be independently
spanned by the vectors.

2.2 Linear Mapping and Matrix

Then we consider linear mapping from one Euclidean space Rn to another Rk.

Definition 2.5 (Linear Mapping). A linear mapping (or linear transformation) f from Rn to
Rk is a function f : Rn → Rk that satisfies the following two properties for all uuu,vvv ∈ Rn and
all scalars c ∈ R:

1. Additivity: f(uuu+ vvv) = f(uuu) + f(vvv)

2. Homogeneity: f(cuuu) = cf(uuu)

If we regard those elements as coordinates of the point in the space, then the linear mapping
could be viewed as a transformation of the coordinate system while keeping the coordinate
unchanged. To see this, let {vvvi}Ni=1 denote one basis of Rn, under which the vector xxx has the
coordinate (x1, x2, ..., xn). Then we have the following result:

Exercise 2.2. Show that f(xxx) =
∑N

i=1 xif(vvvi).

Meanwhile, we know that f(vvvi) is a vector in Rk. Let {uuuj}kj=1 denote a basis of Rk, then
we know that f(vvvi) also has a coordinate with respect to (w.r.t.) this basis. Assume that
the coordinate of f(vvvi) is (a1i, a2i, ..., aki). Then we have the following expression of a linear
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mapping:

f(


x1

x2

...
xn

) =

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

· · ·
ak1x1 + ak2x2 + · · ·+ aknxn


And this is exactly the result when a matrix multiply a vector. That is, if we extract all

the aij’s, we could rewrite the above as
a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

· · ·
ak1x1 + ak2x2 + · · ·+ aknxn

 =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
ak1 ak2 · · · akn



x1

x2

...
xn


The first element on RHS lists all coefficients in n columns, k rows. We call this a matrix of
k×n, and let Rk×n denote the set of all the Matrix whose entries are real numbers. Essentially,
matrix could be thought as a representation of a certain linear mapping, and matrix product
could then be thought as a combination of two linear mapping. For example, let matrix
A ∈ Rk×n denote a linear mapping f : Rn → Rk, and matrix B ∈ Rm×k denote another linear
mapping g : Rk×m. Then the matrix product BA will denote the compound linear mapping
(which is still a linear mapping):

xxx
f→ yyy

g→ zzz ⇔ xxx
f→ Axxx

g→ BAxxx

This also helps explain why we need to align the dimension of matrix when multiply them.
Moreover, if we switch the dimension of the matrix, it is also easy to verify that

(AB)T = BTAT

where superscript T denotes the transpose of matrix. Below is a simple example of linear
transformation:

Example 2.1 (Rotating by 45 Degrees). Consider the linear mapping f : R2 → R2 that
rotates every point in the plane by 45 degrees counterclockwise. The transformation matrix for
this mapping is.

A =

[
cos(45◦) − sin(45◦)

sin(45◦) cos(45◦)

]
=

[√
2
2

−
√
2
2√

2
2

√
2
2

]
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For any vector xxx =

[
x1

x2

]
, the rotated vector f(xxx) is given by:

f(xxx) = Axxx =

[√
2
2

−
√
2
2√

2
2

√
2
2

][
x1

x2

]
=

[√
2
2
(x1 − x2)√

2
2
(x1 + x2)

]

Thus, the coordinates (x1, x2) are transformed to
(√

2
2
(x1 − x2),

√
2
2
(x1 + x2)

)
under the rota-

tion.

You may notice that this rotation operation, or linear mapping, is “reversible” i.e. you
can find another linear mapping to cancel out the impact of the first mapping. Or, more
rigorously, for any vector x, we can find a special matrix M such that MAxxx = xxx. In this

case, we know that MA will be equal to the following very simple matrix:
[
1 0

0 1

]
. We call

such matrix that has 1 on its diagonal and 0 elsewhere identity matrix, as they represent
the trivial linear mapping that maps one element to itself. And we call the qualified matrix
M the inverse matrix of A, denoted by A−1.

A natural question is: can we find an inverse for all the linear mappings (or matrices)?
There are some cases that do not have an inverse. For example, think of a linear mapping
from R3 to R2. Because for any reverse linear mapping, you cannot obtain a 3-dimensional
space from a 2-dimensional plane. Similarly, if a linear mapping from R3 to R3 maps all the
elements to a plane in 3-dimensional space, it will neither have a reverse linear mapping. This
motivates us to think of the rank of a matrix, which is the dimension of the space that a
linear mapping can create.

Definition 2.6 (Rank). The rank of a matrix A is the maximum number of linearly inde-
pendent row vectors (or column vectors) in A. It is a measure of the dimension of the image
of the linear transformation represented by A.

Then, it turns out that an n × n square matrix is invertible (or non-singular) if its rank
is also n (which is also called full rank). This is because an invertible matrix must span the
entire n-dimensional space, meaning its rows (or columns) are linearly independent and the
image of the transformation is the entire space Rn.

In this section, we will mostly focus on other properties of square matrices.

2.3 Eigenvalues and Determinant

If a matrix is not the identity matrix, it changes the coordinates and maps one vector
to another position. Vector is defined by its “direction” and “length”. While the length is
contingent on the metric we use (e.g. [3, 4]T and [5, 0]T are of the same length under L2

10



metric, but not so under L1 metric), direction is more “stable”, as we know that the two
vectors xxx,yyy are of the same direction if we can find a scalar λ such that xxx = λyyy. In the
rotation example, everything changes its direction after the operation. But that is not always
the case. For a square matrix, we call those special vectors whose direction does not change
“eigenvectors”. Their formal definition is as follows:

Definition 2.7 (eigenvectors and eigenvalues). If A is a square matrix, a non-zero vector v

is called an eigenvector of A if it satisfies the equation

Av = λv,

where λ is a scalar known as the eigenvalue corresponding to the eigenvector v.

The concepts of eigenvector and eigenvalues are extremely important in linear algebra, and
has a lot of application. For example, they could be used to measure the importance of each
node in a connected network, which is the core of Google’s algorithm to rank web pages.

Example 2.2. Verify that vvv =

[
1

1

]
is an eigenvector of the matrix

A =

[
4 1

2 3

]

We need a systematic way to calculate the eigenvalues and eigenvectors for a matrix. Note
that the equation Av = λv could be transformed to the system of linear equations:

(A− λI)vvv = 000 (1)

The non-zero vvv = [v1, ..., vn]
T gives a way to linearly combine the column vectors of matrix

(A−λI) to be 000 i.e. to show their linear dependency. Therefore, we consider λ’s that makes the
matrix (A− λI) not full rank. A very useful tool is the determinant, which is a function that
maps a square matrix to a scalar. It has a weird expression and a couple of nice properties.

Definition 2.8 (Determinant). The determinant of a square matrix A, denoted as det(A),
is a scalar value that is a function of the entries of the matrix. defined explicitly as,

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

ai,σ(i), (2)

where Sn is the set of all permutations of {1, 2, . . . , n} and sgn(σ) is the sign of the permutation
σ. The determinant has several key properties:
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• A matrix A is invertible (or non-singular) if and only if det(A) ̸= 0.

• The determinant of a product of matrices is the product of their determinants: det(AB) =

det(A) det(B).

• The determinant of a matrix is equal to the determinant of its transpose: det(A) =

det(AT ).

• Swapping two rows (or columns) of a matrix multiplies its determinant by −1.

• Multiplying a row (or column) by a scalar multiplies the determinant by that scalar.

• Adding a multiple of one row (or column) to another row (or column) does not change
the determinant.

The weird expression is the only function that has those nice properties. Clearly, the
eigenvalues of a matrix are found by solving the characteristic equation

det(A− λI) = 0,

where det denotes the determinant and I is the identity matrix of the same dimension as A.
This determinant is a polynomial of λ, and solving polynomial we get our result of λ1, then
plug in the value of λ, we can find the corresponding eigenvectors.

When calculating determinant, we usually do not directly apply the formula, as it is too
complicated. Instead, we utilize its property to transform the original matrix to a triangular
matrix, and then multiply the diagonal values.

2.4 Square Matrix and Quadratic Forms

Another usage of a square matrix is to summarize quadratic forms. A quadratic form in n

variables is a homogeneous polynomial of degree two and can be written in matrix notation
as

Q(x) = xTAx,

where x is an n-dimensional column vector, xT is its transpose, and A is an n× n symmetric
matrix.

Example 2.3. Consider the simplest quadratic form: x2
1 + x2

2 + 2x1x2. It can be represented
as

Q(x) =
[
x1 x2

] [1 1

1 1

][
x1

x2

]
= x2

1 + 2x1x2 + x2
2.

1There could be solutions with imaginary numbers, but here we focus on the case with only real numbers.
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Here, the matrix A is

A =

[
1 1

1 1

]
.

Quadratic forms can exhibit different properties depending on the nature of the matrix
A. One important property is positive definiteness, which ensures that the quadratic form is
always positive except at the origin.

Definition 2.9 (Positive Definiteness). A symmetric matrix A is called positive definite if
for all non-zero vectors x ∈ Rn,

xTAx > 0.

This property ensures that the quadratic form Q(x) = xTAx is always positive except at the
origin, where it is zero.

Similarly, we can define positive semidefiniteness (by changing “>” to “≥”) and negative
(semi)definiteness. There are multiple methods in linear algebra to test the definiteness of
matrix. Below is some most important ones.

Theorem 2.1 (Leading Principal Minors Test). A symmetric matrix A is positive definite if
and only if all leading principal minors of A are positive. Specifically, for an n× n matrix A,

Ak > 0 for k = 1, 2, . . . , n,

where Ak denotes the determinant of the k-th leading principal submatrix of A.

Theorem 2.2 (Eigenvalue Test). A symmetric matrix A is:

• positive definite if and only if all its eigenvalues are positive,

• positive semidefinite if and only if all its eigenvalues are non-negative,

• negative definite if and only if all its eigenvalues are negative,

• negative semidefinite if and only if all its eigenvalues are non-positive.

3 Function
We already introduced function above, in this section we lay out more properties an defi-

nitions related to function.
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3.1 Limit of Sequence

Sequence is a useful tool to simplify the notion of other concepts. We consider a sequence
{xi} = {x1, x2, ......} that has infinite (but clearly, countable) elements from Euclidean space
Rk.

Definition 3.1. (convergence of sequence) The sequence {xxxi} ⊆ Rk is said to converge to
xxx∗ ∈ Rk if

for each ε > 0, there is an N ∈ N such that d(xxxn − xxx∗) < ε whenever n > N.

And we write it as xxxi → xxx∗.

This “N − ϵ” language makes convergence and limit questions tractable. For a sequence
with a written expression, the question of whether or not it is convergent is transformed to
the question of finding a proper expression of N as a function of ϵ. Take the following exercise
as an example.

Exercise 3.1. Prove that xn = 1
n2+1

converges to 0.

3.2 Open Set and Closed Set

With the concepts of convergent sequence, we are able to give a formal definition for the
openness/closedness of the set.

Definition 3.2. (Open Set) A set U ⊆ Rk is said to be open if for every sequence {xxxi} ⊆ Rk

that converges to a point xxx ∈ U , there exists a subsequence {xxxik} such that xxxik ∈ U for all
k ∈ N.

Definition 3.3. (Closed Set) A set F ⊆ Rk is said to be closed if it contains all its limit
points. Equivalently, F is closed if whenever a sequence {xxxi} ⊆ F converges to a limit xxx ∈ Rk,
then xxx ∈ F .

Note that while the statement is now concise and tidy, it may not be that straightforward
to think through. In Euclidean space, however, there is a type of set whose openness/closeness
is easy to determine:

1. [a, b] = {x ≥ a and x ≤ b|x ∈ R} is closed.

2. (a, b) = {x > a and x < b|x ∈ R} is open.

We can (though not rigorously) verify that they agree with our definition above. Moreover,
it is intuitive to see that for high dimensional space, we have similar result:

1.
{
xi ≥ ai and xi ≤ bi for every i = 1, 2, ..., k|(x1, ..., xk) ∈ Rk

}
is closed.

2.
{
xi > ai and xi < bi for every i = 1, 2, ..., k|(x1, ..., xk) ∈ Rk

}
is open.
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3.3 Continuity

Convergent sequences can also be used to define the continuity of functions:

Definition 3.4 (continuity of function). Let X ⊆ Rd. A function f : X → Rk is continuous
at a point xxx∗ ∈ X if for any convergent sequence {xxxi} ⊆ X with xxxi → xxx∗, we have f(xxxi) → f(xxx∗)

in Rk. If f is continuous at all points in X, we call f continuous on X.

Another way to define the continuity of a function is to use the famous “ϵ− δ” language:

Definition 3.5 (epsilon-delta continuity). Let X ⊆ Rd. A function f : X → Rk is contin-
uous at a point xxx∗ ∈ X if for every ε > 0, there exists a δ > 0 such that for all xxx ∈ X,
if ∥xxx − xxx∗∥ < δ, then ∥f(xxx) − f(xxx∗)∥ < ε. If f is continuous at all points in X, we call f
continuous on X.

A very important peroperty of continuous function is that it is guaranteed to have optimum
values on a bounded and closed domain, as is stated below.

Definition 3.6. (boundedness and compactness)

1. A set U ⊆ Rn is called bounded if there exists M > 0 such that for any xxx ∈ U ,
d(xxx,000) < M .

2. A set U ⊆ Rn is called compact if it is closed and bounded

Theorem 3.1. (Weierstrass theorem) Let f be a continuous function defined over a nonempty
and compact set C ⊆ Rn. Then there exists a global minimum point of f over C and a global
maximum point of f over C.

3.4 Derivative

The concept of the derivative is a fundamental tool in calculus. It provides a measure of
how a function changes as its input changes.

Let f be a function defined on a set S ⊆ Rn; Let xxx ∈ int(S) and let 000 ̸= ddd ∈ Rn. If the
limit

lim
t→0+

f(xxx+ tddd)− f(xxx)

t

exists, then it is called the directional derivative of f at xxx along the direction ddd and is denoted
by f ′(xxx;ddd). A special sets of directional derivative is those along the simplest directions: for
any i = 1, 2, ..., n, the directional derivative at xxx along the direction eeei (the ith vector in the
standard basis) is called the ith partial derivative and is denoted by ∂f

∂xi
(xxx):

∂f

∂xi

(xxx) = lim
t→0+

f(xxx+ teeei)− f(xxx)

t

15



If all the partial derivatives of a function f exists at a point xxx ∈ Rn, then the gradient of f at
xxx is defined to be the column vector consisting of all the partial derivatives:

∇f(xxx) =


∂f
∂x1

(xxx)
∂f
∂x2

(xxx)
...

∂f
∂xn

(xxx)

 .

Differentiability is a stronger requirement than continuity. Every differentiable function is
continuous, but not every continuous function is differentiable. Fortunately, most of the
functions we work with everyday are elementary functions, on which we could confidently
take derivatives.

Definition 3.7 (elementary function). Elementary functions are functions built from basic
functions such as polynomials, exponentials, logarithms, trigonometric functions, and their
inverses using a finite number of arithmetic operations, compositions, and solutions of algebraic
equations.

The gradient is easy to calculate. As the term of limit is essentially a univariate function
of t, it turns out that we can apply similar methods of univeriate calculus to calculate it.

Note that all of the definitions of derivatives in this section is done on the general RN

space, because unlike the univariate case where you only have two directions to approach
a point, in high-dimensional space you have infinitely many (uncountable) directions. For
elementary functions, the gradient provides us with all the information we need to calculate
any directional derivative, as it could be calculated as:

f ′(xxx;ddd) = ∇f(xxx)Tddd

for all xxx ∈ U and ddd ∈ Rn.

3.5 Approximation

Derivative could be used not only to decide the “momentum” of function, but also to
approximate the function. It can also be shown in this setting of continuous differentiability
that the following approximation result holds.

Proposition 3.1. Let f : U → R be defined on an open set U ⊆ Rn. Suppose that f is
continuously differentiable over U . Then

lim
ddd→0

f(xxx+ ddd)− f(xxx)−∇f(xxx)Tddd

∥ddd∥
= 0 for all xxx ∈ U
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Another way to write the above result is as follows:

f(yyy) = f(xxx) +∇f(xxx)T (yyy − xxx) + o(∥yyy − xxx∥),

where o(·) : Rn
+ → R is a one-dimensional function satisfying o(t)

t
→ 0 as t → 0+ or t → ∞.

Another similar notation is the big O “O”, which denotes that O(t)
t

approaches to some constant
as t → 0 or t → ∞. With the notation of big and small o, we are able to analyze the
complicated functions with a system of polynomial series.

A function f defined on an open set U ⊆ Rn is called twice continuously differentiable
over U if all the second order partial derivatives exist and are continuous over U . Under
the assumption of twice continuous differentiability, the second order partial derivatives are
symmetric, meaning that for any i ̸= j and any xxx ∈ U

∂2f

∂xi∂xj

(xxx) =
∂2f

∂xj∂xi

(xxx).

The Hessian if f ar a point xxx ∈ U is the n× n matrix

∇2f(xxx) =


∂2f
∂x2

1
(xxx) ∂2f

∂x1∂x2
(xxx) · · · ∂2f

∂x1∂xn
(xxx)

∂2f
∂x2∂x1

(xxx) ∂2f
∂x2

2
(xxx)

...
... ... ...

∂2f
∂xn∂x1

(xxx) ∂2f
∂xn∂x2

(xxx) · · · ∂2f
∂x2

n
(xxx)


where all the second order partial derivatives are evaluated at xxx. Since f is twice continuously
differentiable over U , the Hessian matrix is symmetric. There are two main approximation
results (linear and quadratic) which are direct consequences of Taylor’s approximation theorem
that will be used frequently in the mini-course and are thus recalled here.

Theorem 3.2. (linear approximation theorem) Let f : U → R be a twice continuously differ-
entiable function over an open set U ⊆ Rn, and let xxx ∈ U, r > 0 satisfy B(xxx, r) ⊆ U . Then
for any yyy ∈ B(xxx, r), there exists ξ ∈ [xxx,yyy] such that

f(yyy) = f(xxx) +∇f(xxx)T (yyy − xxx) +
1

2
(yyy − xxx)T∇2f(ξ)(yyy − xxx).

Theorem 3.3. (quadratic approximation theorem)Let f : U → R be a twice continuously
differentiable function over an open set U ⊆ Rn, and let xxx ∈ U, r > 0 satisfy B(xxx, r) ⊆ U .
Then for any yyy ∈ B(xxx, r),

f(yyy) = f(xxx) +∇f(xxx)T (yyy − xxx) +
1

2
(yyy − xxx)T∇2f(xxx)(yyy − xxx) + o(∥yyy − xxx∥2).
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3.6 Composite Function and Implicit Function

Functions could be combined to generate new composite functions. In the univariate case,
we have the chain rule for finding the derivative of a composite function. Let F (x) = f(g(x)),
then we have

F ′(x) = f ′(g(x))g′(x)

We now extend this chain rule to a general multi-dimensional scenario:
Suppose we have a scalar-valued function z = f(x), where x is a vector of n vari-

ables, x = [x1, x2, . . . , xn]
T , and each xi is a function of another vector t with m variables,

t = [t1, t2, . . . , tm]
T . Then, the composite function z = f(x(t)) depends on the variables t

through x, and we can compute the gradient of z with respect to t using the chain rule in the
multivariate case.

Formally, the gradient of z with respect to t is given by:

∂z

∂t
= ∇xf(x) · Jx(t),

where:

• ∇xf(x) =
[

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]
is the gradient of f with respect to x.

• Jx(t) is the Jacobian matrix of x with respect to t, given by:

Jx(t) =


∂x1

∂t1

∂x1

∂t2
. . . ∂x1

∂tm
∂x2

∂t1

∂x2

∂t2
. . . ∂x2

∂tm... ... . . . ...
∂xn

∂t1
∂xn

∂t2
. . . ∂xn

∂tm

 .

This formulation is particularly useful when dealing with complex systems where variables
are interdependent. It allows us to compute the sensitivity of the function z with respect to
the underlying variables t without explicitly solving for x.

In addition to composite functions, we also encounter cases where we implicitly define one
variable in terms of others. For example, if we have a function G(x, y) = 0 that implicitly
defines y as a function of x, the implicit function theorem provides a way to differentiate y

with respect to x.
If G(x, y) = 0 and ∂G

∂y
̸= 0, the implicit function theorem states that there exists a function
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y = h(x) such that G(x, h(x)) = 0, and the derivative of y with respect to x is given by:

∂y

∂x
= −

(
∂G

∂y

)−1

· ∇xG(x, y).

This result is crucial in many areas of mathematics and economics, where it allows us to
determine how an implicitly defined variable changes in response to changes in other variables.

4 Optimality Conditions for Unconstrained Optimiza-
tion

4.1 Global and Local Optima

Although our main interest in this section is to discuss minimum and maximum points
of a function over the entire space, we will nonetheless present the more general definition of
global minimum and maximum points of a function over a given set.

Definition 4.1. (global and minimum and maximum) Let f : S → R be defined on a set
S ⊆ Rn. Then

1. xxx∗ ∈ S is called a global minimum point of f if f(xxx) ≥ f(xxx∗) for any xxx ∈ S

2. xxx∗ ∈ S is called a strict global minimum point of f if f(xxx) > f(xxx∗) for any
xxx ̸= xxx∗ ∈ S

3. xxx∗ ∈ S is called a global maximum point of f if f(xxx) ≤ f(xxx∗) for any xxx ∈ S

4. xxx∗ ∈ S is called a strict global maximum point of f if f(xxx) < f(xxx∗) for any
xxx ̸= xxx∗ ∈ S

The set S on which the optimization off is performed is also called the feasible set, and any
point xxx ∈ S is called a feasible solution. We will frequently omit the adjective ”global” and
just use the terminology ”minimum point” and ”maximum point.” It is also customary to refer
to a global minimum point as a minimizer or a global minimizer and to a global maximum
point as a maximizer or a global maximizer. A vector xxx∗ ∈ S is called a global optimum of f
over S if it is either a global minimum or a global maximum. The maximal value of f over S

is defined as the supremum off over S:

max {f(xxx) : xxx ∈ S} = sup {f(xxx) : xxx ∈ S}
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Similarly the minimal value of f over S is the infimum of f over S,

min {f(xxx) : xxx ∈ S} = inf {f(xxx) : xxx ∈ S}

and is equal to f(xxx∗ when xxx∗ is a global minimum of f over S. Note that the maximum or
minimum may not be actually attained. As opposed to global maximum and minimum points,
minimal and maximal values are always unique. There could be several global minimum points,
but there could be only one minimal value. The set of all global minimizers o f f over S is
denoted by

argmin {f(xxx) : xxx ∈ S}

and the set of all global maximizers of f over S is denoted by

argmax {f(xxx) : xxx ∈ S}

Example 4.1. Consider the two-dimensional function

f(x, y) =
x+ y

x2 + y2 + 1

defined over the entire space R2. The surface plot of the function are given in the following
figure. The function has two optima points: a global maximizer (x, y) = ( 1√

2
, 1√

2
) and a global

minimizer (x, y) = (− 1√
2
,− 1√

2
). The maximal value of the function is 1√

2
and the minimal

value is − 1√
2
.

−4 −2 0 2 4 −5

0

5−0.5

0

0.5

Figure 4.1: Surface plots of f(x, y) = x+y
x2+y2+1

Our main task will usually be to find and study global minimum or maximum points;
however, most of the theoretical results only characterize local minima and maxima which are
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Figure 4.2: Local and global optimum points of a one-dimensional function

optimal points with respect to a neighborhood of the point of interest. The exact definitions
follow.

Definition 4.2. (local minima and maxima) Let f : S → R be defined on a set S ⊆ Rn. Then

1. xxx∗ ∈ S is called a local minimum point of f over S if there exists r > 0 for which
f(xxx∗) ≤ f(xxx) for any xxx ∈ S ∩ B(xxx∗, r),

2. xxx∗ ∈ S is called a strict local minimum point of f over S if there exists r > 0 for
which f(xxx∗) < f(xxx) for any xxx ̸= xxx∗ ∈ S ∩B(xxx∗, r),

3. xxx∗ ∈ S is called a local maximum point of f over S if there exists r > 0 for which
f(xxx∗) ≥ f(xxx) for any xxx ∈ S ∩ B(xxx∗, r),

4. xxx∗ ∈ S is called a strict local maximum point of f over S if there exists r > 0 for
which f(xxx∗) < f(xxx) for any xxx ̸= xxx∗ ∈ S ∩ B(xxx∗, r).

Of course, a global minimum (maximum) point is also a local minimum (maximum) point.
As with global minimum and maximum points, we will also use the terminology local minimizer
and local maximizer for local minimum and maximum points, respectively.

4.2 First Order Optimality Condition

A well-known result is that for a one-dimensional function f defined and differentiable
over an interval (a, b), if a point x∗ ∈ (a, b) is a local maximum or minimum, thenf ′(x∗) = 0.
This is also known as Fermat’s theorem. The multidimensional extension of this result states
that the gradient is zero at local optimum points. We refer to such an optimality condition
as a first order optimality condition, as it is expressed in terms of the first order derivatives.
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In what follows, we will also discuss second order optimality conditions that use in addition
information on the second order (partial) derivatives.

Theorem 4.1. (first order optimality condition for local optima points) Let f : U → R be a
function defined on a set U ⊆ Rn. Suppose that XXX∗ ∈ int(U) is a local optimum point and
that all the partial derivatives of f exist at xxx∗. Then ∇f(xxx∗) = 000.

Proof. Let i ∈ {1, 2, ..., n} and consider the one-dimensional function g(t) = f(xxx∗ + teeei). Note
that g is differentiable at t = 0 and that g′(0) = ∂f

∂xi
(xxx∗). Since xxx∗ is a local optimum point

of f , it follows that t = 0 is a local optimum of g, which immediately implies that g′(0) = 0.
The latter is exactly the same as ∂f

∂xi
(xxx∗) = 0. Since this is true for any i ∈ {1, 2, ..., n}, the

result ∇f(xxx∗) = 000 follows ■

Note that the proof of the first order optimality conditions for multivariate functions
strongly relies on the first order optimality conditions for one-dimensional functions. The
theorem presents a necessary optimality condition: the gradient vanishes at all local optimum
points, which are interior points of the domain of the function; however, the re- verse claim
is not true-there could be points which are not local optimum points, whose gradient is zero.
For example, the derivative of the one-dimensional function f(x) = x3 is zero at x = 0,
but this point is neither a local minimum nor a local maximum. Since points in which the
gradient vanishes are the only candidates for local optima among the points in the interior of
the domain of the function, they deserve an explicit definition.

Definition 4.3. (stationary points) Let f : U → R be a function defined on a set U ⊆ Rn.
Suppose that xxx∗ ∈ int(U) and that f is differentiable over some neighborhood of xxx∗. Then xxx∗

is called a stationary point of f if ∇f(xxx∗) = 0.

Thus, local optimum points are necessarily stationary points.

4.3 Second Order Optimality Conditions

Recall the criterion of local optimum for one-dimensional twice continuous differentiable
function f(x):

1. if f ′(x∗) = 0 and f ′′(x) > 0, then x∗ is a local minimizer.

2. if f ′(x∗) = 0 and f ′′(x) < 0, then x∗ is a local minimizer.

This motivates us to consider the exntension of the second order derivative characterization
of optimum criterion. Essentially we have the following theorem.

Theorem 4.2. Let f : U → R be a function defined on an open set U ⊆ Rn. Suppose that f is
twice continuously differentiable over Uand that xxx∗ is a stationary point. Then the following
hold:
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1. If xxx∗ is a local minimum point of f over U , then ∇2f(x∗x∗x∗) ≽ 0,

2. If xxx∗ is a local maximum point of f over U , then ∇2f(x∗x∗x∗) ≼ 0,

3. If ∇2f(x∗x∗x∗) ≻ 0, then xxx∗ is a local minimum point of f over U ,

4. If ∇2f(x∗x∗x∗) ≺ 0, then xxx∗ is a local minimum point of f over U ,

Intuitively, to be a local minimum, there should not be any descending direction when
starting from the minimizer around a neighborhood. The subtle difference between ≽ and ≻
emerges when one applies the second order approximation to prove the theorem. Meanwhile
we have another way to guarantee the sufficiency of optimum with a stronger condition:

Theorem 4.3. Let f be a twice continuously differentiable function defined over Rn. Suppose
that ∇2f(xxx) ≥ 0 for any xxx ∈ Rn. Let xxx∗ Rn be a stationary point of f . Then xxx∗ is a global
minimum point of f .

5 Convex Function

5.1 Definition and Examples

Definition 5.1. (convex functions) A function f : C → R defined on a convex set C ⊆ Rn is
called convex (or convex over C) if

f(λxxx+ (1− λ)yyy) ≤ λf(xxx) + (1− λ)f(yyy) for any xxx,yyy ∈ C, λ ∈ [0, 1] (3)

The fundamental inequality ?? is illustrated in the following figure.

f(x)

a x λx+ (1− λ)y y b

f [λx+ (1− λ)y]

λf(x) + (1− λ)f(y)

x

y

Figure 5.1: Illustration of inequality f(λxxx+ (1− λ)yyy) ≤ λf(xxx) + (1− λ)f(yyy)
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In case when no domain is specified, then we naturally assume that f is defined over the
entire space Rn. If we do not allow equality in ?? when xxx ̸= yyy and λ ∈ (0, 1), the function is
called strictly convex.

Definition 5.2. (strictly convex functions) A function f : C → R defined on a convext set
C ⊆ Rn is called strictly convex if

f(λxxx+ (1− λ)yyy) < λf(xxx) + (1− λ)f(yyy) for any xxx ̸= yyy ∈ C, λ ∈ (0, 1)

Another important concept is concavity. A function is called concave if −f is convex.
Similarly, f is called strictly concave if −f is strictly convex. We can of course write a more
direct definition of concavity based on the definition of convexity. A function f is concave if
and only if for any xxx,yyy ∈ C and λ ∈ [0, 1] we have

f(λxxx+ (1− λ)yyy) ≥ λf(xxx) + (1− λ)f(yyy)

Equipped only with the definition of convexity, we can give some elementary examples of
convex functions. We begin by showing the convexity of affine functions, which are functions
of the form f(x) = aaaTxxx+ b, where aaa ∈ Rn and b ∈ R. (If b = 0, then f is also called linear.)

Example 5.1. (convexity of affine functions) Let f(xxx = aaaTxxx + b, where aaa ∈ Rn and b ∈ R.
To show that f is convex, take xxx,yyy ∈ Rn and λ ∈ [0, 1]. Then

f(λxxx+ (1− λ)yyy) = aaaT (λxxx+ (1− λ)yyy) + b

= λ(aaaTxxx) + (1− λ)(aaaTyyy) + λb+ (1− λ)b

= λ(aaaTxxx+ b) + (1− λ)(aaaTyyy + b)

= λf(xxx) + (1− λ)f(yyy)

and thus in particular f(λxxx+(1−λ)yyy) ≤ λf(xxx)+(1−λ)f(yyy), and convexity follows. Meanwhile,
it is also trivial that affine functions are both convex and concave. ■

The basic property characterizing a convex function is that the function value of a convex
combination of two points xxx and yyy is smaller than or equal to the corresponding convex
combination of the function values f(xxx) and f(yyy). An interesting result is that convexity
implies that this property can be generalized to convex combinations of any number of vectors.
This is the so-called Jensen’s inequality.

Theorem 5.1. (Jensen’s inequality) Let f : C → R be a convex function where C ⊆ Rn is a
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convex set. Then for any xxx1,xxx2, ...,xxxk ∈ C and λ ∈ ∆k, the following inequality holds:

f(
k∑

i=1

λixxxi) ≤
k∑

i=1

λif(xxxi). (4)

Proof. We will prove the inequality by induction on k. For k = 1 the result is obvious (it
amounts to f(xxx1) ≤ f(xxx1) for any xxx1 ∈ C). The induction hypothesis is that for any k vectors
xxx1,xxx2, ...,xxxk ∈ C and any λ ∈ ∆k, the inequality ?? holds. We will now prove the theorem
for k + 1 vectors. Suppose that xxx1,xxx2, ...,xxxk+1 ∈ C and that λ ∈ ∆k+1. We will show that
f(zzz) ≤

∑k+1
i=1 λif(xxxi), where zzz =

∑k+1
i=1 λixxxi. If λk+1 = 1, then zzz = xxxk+1 and ?? is obvious. If

λk+1 < 1, then

f(zzz) = f(
k+1∑
i=1

λixxxi)

= f(
k∑

i=1

λixxxi + λk+1xxxk+1)

= f((1− λk+1)
k∑

i=1

λi

1− λk+1

xxxi︸ ︷︷ ︸
vvv

+λk+1xxxk+1)

≤ (1− λk+1f(vvv) + λk+1f(xxxk+1).

Since
∑k

i=1 = 1−λk+1

1−λk+1=1
, it follows that vvv is a convex combination of k points from C, and

hence by the induction hypothesis we have that f(vvv) ≤
∑k

i=1
λi

1−λk+1
f(xxxi), which combined

with the ineuqality above yields

f(zzz) ≤
k+1∑
i=1

λifi(xxxi)

■

5.2 First Order Characterization of Convex Functions

Convex functions are not necessarily differentiable, but in case they are, we can replace
the Jensen’s inequality definition with other characterizations which utilize the gradient of the
function. An important characterizing inequality is the gradient inequality, which essentially
states that the tangent hyperplanes of convex functions are always underestimates of the
function.
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Theorem 5.2. (the gradient inequality) Let f : C → R be a continuously differentiable
function defined on a convex set C ⊆ Rn. Then f is convex over C if and only if

f(xxx) +∇f(xxx)T (yyy − xxx) ≤ f(yyy) for any xxx,yyy ∈ C. (5)

Proof. Suppose that f is convex. Let xxx,yyy ∈ C and λ ∈ (0, 1]. If xxx = yyy, then ?? trivially holds.
We will therefore assume that xxx ̸= yyy. Then

f(λyyy + (1− λ)xxx) ≤ λf(yyy) + (1− λ)f(xxx),

and hence

f(xxx+ λ(yyy − xxx))− f(xxx)

λ
≤ f(yyy)− f(xxx).

Taking λ → 0+, the left-hand side converges to the directional derivative of f at xxx in the
direction yyy − xxx, so that

f ′(xxx;yyy − xxx) ≤ f(yyy)− f(xxx)

Since f is continuously differentiable, it follows that f ′(xxx,yyy −xxx) = ∇f(xxx)T (yyy −xxx), and hence
?? follows. To prove the reverse direction, assume that the gradient inequality holds. Let zzz,
www ∈ C, and let λ ∈ (0, 1). We will show that f(λzzz + (1 − λ)www) ≤ λf(zzz) + (1 − λ)f(www). Let
uuu = λzzz + (1− λ)www ∈ C. Then

zzz − uuu =
uuu− (1− λ)www

λ
− uuu = −1− λ

λ
(www − uuu).

Invoking the gradient inequality on the pairs zzz,uuu and www,uuu, we obtain

f(uuu) +∇f(uuu)T (zzz − uuu) ≤f(zzz),

f(uuu)− λ

1− λ
∇f(uuu)T (zzz − uuu) ≤f(www).

Multiplying the first inequality by λ
1−λ

and adding it to the second one, we obtain

1

1− λ
f(uuu) ≤ λ

λ
f(zzz) + f(www),

which after multiplication by 1− λ amounts to the desired inequality

f(uuu) ≤ λf(zzz) + (1− λ)f(www).
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■

Geometrically, the gradient inequality essentially states that for convex functions, the
tangent hyperplane is below the surface of the function. A two-dimensional illustration is
given in the following figure. A direct result of the gradient inequality is that the first order

−2 −1 0 1 2−2

0

2

−5

0

5

Figure 5.2: The function f(x, y) = x2 + y2 and its tangent hyperplane at (1, 1), which is a
lower bound of the function’s surface.

optimality condition ∇f(xxx∗) = 000 is sufficient for global optimality.

Proposition 5.1. (sufficiency of stationary) Let f be a continuously differentiable function
which is convex over a convex set C ⊂ Rn. Suppose that ∇f(xxx∗) = 000 for some xxx∗ ∈ C. Then
xxx∗ is a global minimizer of f over C.

Proof. Let zzz ∈ C. Plugging xxx = xxx∗ and yyy = zzz in the gradient inequality ??, we obtain that

f(zzz) ≥ f(xxx∗) +∇f(xxx∗)T (zzz − xxx∗),

which by the fact that ∇f(xxx∗) = 000 implies that f(zzz) ≥ f(xxx∗), thus establishing that xxx∗ is the
global minimizer of f over C. ■

We note that the above proposition establishes only the sufficiency of the stationarity
condition ∇f(xxx∗) = 000 for guaranteeing that xxx∗ is a global optimal solution. There could be
some cases that the global minimizer does not satisfy the assumption (e.g. corner solution in
a closed set). When C is not the entire space, this condition is not necessary. However, on
most occasions of our interest (e.g. C = Rn) this is not the case. Analogously, the same
logic applies to the sufficiency of stationarity for guaranteeing a global maximizer
when the function is concave.
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5.3 Second Order Characterization of Convex Functions

When the function is twice continuously differentiable, convexity can be characterized by
the positive semidefiniteness of the Hessian matrix.

Theorem 5.3. (second order characterization of convexity) Let f be a twice continuously
differentiable function over an open convex set C ⊆ Rn. Then f is convex if and only if
∇2f(xxx) ≽ 0 for any xxx ∈ C.

Proof. Suppose that ∇2f(xxx ≽ 0 for all xxx ∈ C. We will prove the gradient inequality, which
by Theorem 3.5 is enough in order to establish convexity. Let xxx,yyy ∈ C. Then by the linear
approximation theorem we have that there exists zzz ∈ [xxx,yyy] (and hence zzz ∈ C) for which

f(yyy) = f(xxx) +∇f(xxx)T (yyy − xxx) +
1

2
(yyy − xxx)T∇2f(zzz)T (yyy − xxx) (6)

Since ∇f(zzz) ≽ 0, it follows that (yyy−xxx)T∇2f(zzz)T (yyy−xxx) ≥ 0, and hence by ??, the inequality
f(yyy) ≥ f(xxx) +∇f(xxx)T (yyy − xxx) holds.
To prove the opposite direction, assume that f is convex over C. Let xxx ∈ C and let y ∈ Rn.
Since C is open, it follows that xxx+ λyyy ∈ C for 0 < λ < ε, where ε is a small enough positive
number. Invoking the gradient inequality we have

f(xxx) + λyyy = f(xxx) + λ∇f(xxx)Tyyy

In addition, by the quadratic approximation theorem we have that

f(xxx+ λyyy) = f(xxx) + λ∇f(xxx)Tyyy +
λ2

2
yyyT∇2f(xxx)yyy + o(λ2∥yyy∥2),

Combine the two inequalities above we will have

λ2

2
yyyT∇2f(xxx)yyy + o(λ2∥yyy∥2) ≥ 0

for any λ ∈ (0, ε). Dividing the latter inequality by λ2 and taking λ → 0+, we conclude that

yyyT∇2f(xxx)yyy ≥ 0

for any y ∈ Rn, implying that ∇2f(xxx) ≽ 0 for any xxx ∈ C. ■

5.4 Operations Preserving Convexity

There are several important operations that preserve the convexity property. First, the
sum of convex functions is a convex function and a multiplication of a convex function by a
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nonnegative number results with a convex function.

Theorem 5.4. (preservation of convexity under summation and multiplication by nonnegative
scalars)

1. Let f be a convex function defined over a convex set C ⊆ Rn and let α ≥ 0. Then αf is
a convex function over C.

2. Let f1, f2, ..., fp be convex functions over a convex set C ⊆ Rn. Then the sum function
f1 + f2 + · · ·+ fp is convex over C

Theorem 5.5. (preservation of convexity under composition with a nondecreasing convex
function) Ler f : C → R be a convex function over the convex set C ⊆ Rn. Let g : I → R
be a one-dimensional nondecreasing convex function over the interval I ⊆ R. Assume that the
image of C under f is contained in I: f(C) ⊆ I. Then the composition of g with f defined by

h(xxx) ≡ g(f(xxx)), xxx ∈ C

is a convex function over C.

5.5 Relationship between Concavity and Optimization

Note that by utilizing theorem 5.2 we immediately know that for a concave (convex)
function, stationary point is also a global minimum (maximum). Therefore, if the objective
function is concave (convex), we could save our efforts from verifying the sufficient conditions.

Dive a bit deeper, we can see that the second order Hessian matrix of a concave function
is guaranteed to be negative semi-definite everywhere on the domain. And this is stronger
than the sufficient condition which only requires the matrix being semi-definite locally around
the stationary point. Given a set of normal concave function and operations that preserve
the concavity, we are able to conviniently skip the complicated calculation of Hessian matrix
when figuring out optimum.

29



6 Constrained Optimization
Constrained optimization refers to the case of finding maximum/minimum of a function

on a non-conventional domain. A typical constrained optimization takes the following form:

max f(xxx)

s.t. gi(xxx) ≥ 0, i = 1, 2, ..., ,m

hj(xxx) = 0, j = 1, 2, ..., p

s.t. means either ”such that” or ”subject to”, and the following equations and inequalities
define the domain of the function.

6.1 Intuition

Constrained optimization usually corresponds to the real world case of allocating a scarce
resources. Therefore, the objective function is usually unbounded on its natural domain, and
the optimum is contingent on the constraint we have. In the univariate case, we know that if
we want to restrict the domain, we usually result in really simple one direction or two direction
inequalities e.g. x < 1, 1 ≤ x ≤ 5. If the optimum is contingent on the constraint, it must
lie on the “edge” of constraint, and in this case one of two end points. In multivariate case,
however, the edges usually consist of not two, but infinitely many points. The problem is then
turned to selecting a point on the edge. Consider the simplest case of one constraint:

max f(xxx)

s.t. g(xxx) = 000.

We could transform this to an unconstrained optimization problem by replacing one variable
with the others using the constraint. Specifically, let xxx−n denote the collection of the first
1 to n − 1 variables, and assume that we could derive from constraint an implicit function:
xn = G(xxx−n). From implicit function theorem, we have

∇G(xxx−n) = −(
∂g

∂xn

)−1(∇g)−n

where (∇g)−n denote the first n− 1 terms of the gradient of g. With this replacement we can
transform the problem to

max f(xxx−n, G(xxx−n))
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Consider the first order condition, we have

(∇f)−n +
∂f

∂xn

∇G(xxx−n) = 000

⇒ (∇f)−n =
∂f

∂xn

(
∂g

∂xn

)−1(∇g)−n

The above equation means: for any i of the first (n − 1) variable, the ratio between ∂f
∂xi

and
∂g
∂xi

is the same. This conclusion also holds when we consider the n−th variable, as

∂f

∂xn

=
∂f

∂xn

(
∂g

∂xn

)−1 ∂g

∂xn

To summarize, the first order condition indicates that the optimum should be some point on
which the gradient of objective function and the gradient of constraint function are of the
same direction i.e. we are able to find some scalar λ such that

∇f(xxx0) = λ∇g(xxx0)

Geometrically, for a function f defined on Rn, the equation f(xxx) = m defines an isoquant
contour of the function, and the gradient evaluated at the point, ∇f(xxx0) is the “direction”
of the line/plane/hyperplane that is tangent to the contour at the point xxx0. Take a two-
dimensional function as an example: let f(x, y) = x2 + y2. We know that for any positive
real number m, x2 + y2 = m defines an isoquant contour which is a circle. And at any given

point (x0, y0), the gradient
[
2x0

2y0

]
defines the line that is tangent to the contour at the point.

Specifically, we know that the line
[
2x0

2y0

]
[x, y] =

[
0

0

]
is tangent to the circle x2+ y2 = xy

0 + y20

at the point (x0, y0). Therefore, we conclude that if the optimum lies on the edge defined by
g(xxx) = 0, it must be the point where the tangent hyperplane of both the objective function
and the constraint are the same.

We can extend this argument in two dimensions. Firstly, if we consider more than one edge
and attempt to find optimum on the intersection of several edges. Then the optimum must
be the point where the tangent hyperplane of isoquant contour overlaps with the hyperplane
of the intersection set i.e. there exists a set of scalars {λi} such that

∇f(xxx0) =
∑
i

λi∇gi(xxx0)

Secondly, there may also be some constraints which the optimum do not lie on. We usually
call such constraints “slack” as they are not binding at the optimum. The above formula also
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holds for these constraints by simply setting the corresponding λ to 0.
To streamline the above procedures, we usually construct the Lagrangian function,

denoted by L(xxx;λλλ), as follows:

L = f(xxx)−
p∑

i=1

λigi(xxx)

And state the necessary first-order conditions as follows:

∂L
∂xxx

= 000

λigi(xxx) = 0, i = 1, ..., p.

6.2 The KKT Conditions

After providing the intuition and practical steps in finding constrained optimum, we for-
mally state the necessary conditions, called “Karush–Kuhn–Tucker (KKT) conditions”, of
constrained optimum. The preassumptions of applying the conditions vary, and in this note
we pay attention to a very special case that is frequently met in economics studies and whose
validity is easily proved.

Theorem 6.1. (sufficiency of the KKT conditions for concave optimization problems) Let xxx∗

be a feasible solution of the problem

max f(xxx)

s.t. gi(xxx) ≥ 0, i = 1, 2, ..., ,m,

hj(xxx) = 0, j = 1, 2, ..., p,

where f, g1, ..., gm are continuously differentiable concave functions over Rn and h1, h2, ..., hp

are linear functions. Suppose that there exist multipliers λ1, λ2, ..., λm ≥ 0 and µ1, µ2, ..., µp ∈ R
such that

∇f(xxx∗) +
m∑
i=1

λi∇gi(xxx
∗) +

n∑
j=1

µj∇hi(xxx
∗) = 0,

λigi(xxx
∗) = 0, i = 1, 2, ...,m

Then xxx∗ is an optimal solution of the problem.

Proof. Let xxx be a feasible solution of the problem. We will show that f(xxx∗) ≥ f(xxx). Note
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that the function

s(xxx) = f(xxx) +
m∑
i=1

λigi(xxx) +

p∑
j=1

µjhj(xxx)

is concave, and since ∇s(xxx∗) = ∇f(xxx∗) +
∑m

i=1 λi∇gi(xxx
∗) +

∑p
j=1 µj∇hj(xxx

∗) = 000, it follows
that xxx∗ is a maximizer of s(·) over Rn, and in particular s(xxx∗) ≥ s(xxx). We can thus conclude
that

f(xxx∗) = f(xxx∗) +
m∑
i=1

λigi(xxx
∗) +

p∑
j=1

µjhj(xxx
∗)

= s(xxx∗)

≥ s(xxx)

= f(xxx) +
m∑
i=1

λigi(xxx) +

p∑
j=1

µjhj(xxx)

≥ f(xxx)

■

6.3 Envelope Theorem

Now suppose we address a well-defined constrained optimization, and obtain the result
xxx∗. We may then be interested in the properties of the solution. That is, if we have several
other coefficients in the constraints and objective function, the optimum value y∗ = f(xxx∗) will
be a function of these coefficients. For example, if you want to maximize your production
under a given budget of purchasing inputs, the increase in price or change in technology will
impact your maximum output. If we have explicit functional forms, we could directly write
out the closed-form solution, and the thing will go easy. While we also have some general
properties that do not depend on specific functional forms, which we usually call “envelope
theorem”. Formally, consider an objective function f(xxx, θ) that we wish to maximize subject
to constraints g(xxx, θ) = 0, where θ is a parameter of interest. Let xxx∗(θ) denote the optimal
solution and y∗(θ) = f(xxx∗(θ), θ) denote the optimal value. The envelope theorem states that
the derivative of the optimal value with respect to the parameter θ is given by:

dy∗(θ)

dθ
=

∂L(xxx∗, λ∗, θ)

∂θ

where L(xxx, λ, θ) is the Lagrangian of the problem, and λ∗ is the vector of Lagrange mul-
tipliers at the optimum. This result allows us to easily assess the sensitivity of the optimal
value to changes in the parameters.
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6.4 Example: GDP and price index

The concept of GDP is usually the content of the first class in macroeconomics. It is the
summation of value added across all industries. As apples and bananas cannot be directly
added up, we firstly transform them into monetary terms and then calculate the summation
of these numbers. By doing so we obtain the nominal GDP of the economy, which is usually
accompanied with a price index to help tease out the impact of purely price change. The
following practice help establish a link between the math we have learned and this daily
economic concepts. We restrict our attention to a specific topic i.e. we simplify the real world
economy, to consider only consumption over a range of different goods in a representative
agent world. Let x1, x2, ...., xN denote the consumption amount of N various goods with
prices being respectively pi. The total income of the consumer is M . Then the agent allocates
its consumption by solving the following constrained optimization problem (termed utility
maximization problem in economics):

maxU(x1, x2, ..., xN)

such that
N∑
i=1

pixi = M

U(x1, x2, ..., xN), a concave function (to get rid of the sufficiency of optimum), is called utility
function in microeconomics, while in macroeconomics it is also sometimes called aggregator,
as it aggregates consumption over all goods to generate utility, and, with a bit of craziness
at a first glance, we can directly treat it as GDP! To see this, we firstly impose a reasonable
assumption on the aggregator function.

Definition 6.1. (homogeneous function) A function f : C → R defined on a convex hull
C ⊆ Rn is called homogeneous of degree k (k ∈ N) if for any λ > 0 we have

f(λxxx) = λkf(xxx)

We assume that the aggregator function is homogeneous of degree 1, which is also usually
called constant return to scale in economics. And we will also utilize the following properties
of homogenous function:

Theorem 6.2. (Euler’s homogeneous function theorem) Let f : C → R where C ⊆ Rn be a
continuously differentiable function homogeneous of degree k, then we have

kf(x1, x2, ..., xn) =
n∑

i=1

xi
∂f

∂xi

Now let’s follow the regular procedures of constrained optimization. Firstly, we establish
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a Lagrangian function with λ being the Lagrangian multiplier for the only constriant:

L(λ,xxx) = U(xxx) + λ(M −
N∑
i=1

pixi)

Then, we derive the first order condition (FOC) for the function:

∂U

∂xi

= λpi for i = 1, 2, ..., N

We have N such conditions, and we combine them with the constraint to form a system of
equations, from which we could solve out exactly N + 1 variables: xi’s and λ. Even before
plugging in the specific functional form, we could treat the FOC with some tricks: multiplying
each side by xi, and sum all the N FOCs up we have

N∑
i=1

xi
∂U

∂xi

= λ

N∑
i=1

pixi

For the left hand side (LHS) of equation, we apply Euler’s homogeneous function theorem.
For the right hand side (RHS) of equation, we apply the constraint. Combine them together
we will have

U = λM

Note that M is the total income. We can imagine a simplified case where the economy
has only one homogeneous good and consumers spend all income to consume that good. In
such a world, it is easy to calculate GDP and inflation, and this imagination is represented
mathematically by the equation above, if we treat U as the consumption amount of the ”final
good”, and λ the inverse of the price of the good. In state-of-the-art economics researches on
multiple sector economy, this is exactly the case. λ is exactly the inverse of price index to
dictate the change in prices. This will be more clear if we have a specific functional form and
derive λ as a function of all prices.

Example 6.1. Calculate the constrained optimization result above with following specific func-
tional forms of U :

1. U(x1, x2) = xα
1x

1−α
2

2. U(x1, x2) = (xα
1 + xα

2 )
1
α
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