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Modern economics features various optimization problems: households maximizing their utility,
firms minimizing their production cost, investors maximizing their expected return... More pre-
cisely, we call them constrained optimization problems. The intension between ”constraint”
and "optimization” points to the core of economics — allocation of resources under scarcity. This
minicourse is aimed at preparing you for essential math prerequsite for handling optimization prob-
lems you may meet in future economics courses. This lecture note is a self-contained introduction
to the fundamental mathematical method to address constrained optimization problems — Karush—
Kuhn-Tucker (KKT)conditions. It is a concise version of the following textbook:

Beck, A. (2014). Introduction to nonlinear optimization: Theory, algorithms, and ap-
plications with MATLAB

The author of the book is an expert on operation research, and the optimization problems in the
book is regularized to minimization problem. While in economics you will more frequently be
met with maxzimization problems, although they are trivially equivalent. Thus, I follow mostly the
textbook in most part of the lectures except the last part where I consider a maximization problem
with a concave objective function on a convex space. The basic structure of this lecture note is
as follows: firstly, we will go through some basic mathematical knowledge with rather rigorous
treatment. Then we take the short route to prove the validity of KKT for constrained optimization
problems. On the one hand, this lecture note will be a bit "mathematical” in the sense that its
focus is on proving the validity behind the algorithm, while some examples and pratical guides are
also provided in the end of notes. On the other hand, I try to be concise in that by imposing
specific condition that is usually satisfied in economic studies, the proof could be really simple and
intuitive, circumventing the regular second order condition that has heavy algebra. While we begin
with "mathematical preliminaries”, I assume that the students have already taken basic calculus
course in their undergraduate institution. If not, we can still cover some more fundamental concepts
in the beginning of the course and supplement related materials.



1 Mathematical Preliminaries

1.1 The Space R”

The vector space R™ is the set of n-dimensional column vectors with real components endowed with
the component-wise addition operator
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where in the above x1, 29, ...,Z,, A are real numbers. Throughout this mini-course we are mainly
interested in problems over R"

Important Subset of R™ The nonnegative orthant is the subset of R™ consisting of all vectors
in R"™ with nonnegative components and is denoted by R :

Ri = {(.I'hl‘g,...,l‘n)T F X1 X2y w00y Ty 2 0}

Similarly, the positive orthant consists of all the vectors in R™ with positive components and is
denoted by R? _ :

R}, = {(ml,:vg, )T iy, o > 0}

For a given z,y € R"™, the closed line segment between x and y is a subset of R™ denoted by [z, y]
and defined as

[IL‘,y] = {fE—l—Oé(y _m) fac [Oa 1]}
The open line segment [z,y] is similarly defined as
(z,y) ={z+aly—=):ac(0,1)}
when & # y and is the empty set when x = y. The unit simplex, denoted by A, is the subset of
R™ comprising all non-negative vectors whose sum is 1.
1.2 The Space R™*"

The set of all real-valued matrices of order m X n is denoted by R™*"™. Some special matrices that
will be frequently used are the n x n identity matrix denoted by I,, and the m X n zeros matrix
denoted by 0,,x,. For a special class of matrices — square and symmetric matrix on R"*™ an
important property is used frequently below.



Definition 1.1. (positive definiteness)

1. A symmetric matriz A € R™ "™ is called positive semidefinite, denoted by A = 0, if
xT Az > 0 for every x € R™.

2. A symmetric matric A € R™™ 4s called positive definite, denoted by A = 0, if T Az > 0
for every x € R™.

Similarly, the symmetric square matrix A is called negative semidefinite/definite if —A is
positive semidefinite/definite. There are multiple methods in linear algebra to test the definiteness
of matrix. But in this mini-course

1.3 Inner Products and Norms

Inner Products We begin with the formal definition of an inner product.

Definition 1.2. (inner product) An inner product on R™ is a map (-,-) : R x R™ — R with the
following properties:

~

. (symmetry) (z,y) = (y,x) for any z,y € R™.

2. (additivity) (x,y + 2z) = (z,y) + (&, z) for any z,y,z € R".

3. (homogeneity) (\x,y) = \x,y) for any A € R and z,y € R".

4. (positive definiteness) (x,x) > 0 for any £ € R™ and (x,z) =0 if and only if x = 0.
Example 1.3. Perhaps the most widely used inner product is the so-called dot product defined by
(x,y) =x"y = ixiyi for any z,y € R".

i=1

Since this is in a sense the "standard” inner product, we will by default assume—unless explicitly
stated otherwise-that the underlying inner product is dot product.

Example 1.4. The dot product is not the only possible inner product on R™. For example, let
w € RY . Then it is easy to show that the following weighted dot product is also an inner product:

n
(@, y)w = szxzyz
i=1
Vector Norms
Definition 1.5. (norm) A norm ||| is a function ||| : R™ — R satisfying the following:
1. (nonnegativity) ||z| > 0 for any € € R™ and ||z|| =0 if and only if z = 0.
2. (positive homogeneity) || x| = |A|||z|| for any x € R"™ and A € R™.

3. (triangle inequality) ||z +y|| < ||z|| + |ly|| for any z,y € R™.



One natural way to generate a norm on R™ is to take any inner product (-, cdot) on R™ and
define the associated norm

lz]| = /(z, ) for all z € R"™

which can be easily seen to be a norm. If the inner product is the dot product, then the associated
norm is the so-called Fuclidean norm or ly norm:

Zw? for all z € R"
i=1

]2

By default, the underlying norm on R" is ||-||, anbd the subscript 2 will be frequently omitted. The
Euclidean norm belongs to the class of I, norms (for p > 1) defined by

l2ll, =

1.4 Convergence and Continuity
With the definition of norms, it immediately follows to define distance between two points z,y € R"
by

d(z,y) = [lz -yl

Then we can extend the notion of convergence of one-dimensional real-valued sequence to this
setting.

Definition 1.6. (convergence of sequence) The sequence {x;} C R* is said to converge to x* € RF
if

for each € > 0, there is an N € N such that d(z,, —x") < € whenever n > N.
And we write it as x; — x*.

With the definition of convergence, we are able to define the property of continuity for function
f as follows:

Definition 1.7. continuity of function Let X C R?, then the function f : X — R* is continuous
on point z* € X if for any convergent sequence {x;} C X with x; — «*, we have f(z;) — f(z*) in
RE. If f is continuous on all the points in X, we call f continuous on X.

1.5 Basic Topology

We begin with the definition of a ball

Definition 1.8. (open ball, closed ball) The open ball with center ¢ € R™ and radius r is denoted
by B(e,r) and defined by

Ble,r)={zeR": ||z —c| <r}.
The closed ball with center ¢ and radius r is denoted by Blc,r] and defined by

Ble,r]={z eR": ||z —¢|| <r}



The ball B(e,r) for some arbitrary r > 0 is also referred to as a neighborhood of ¢. The first
topological notion we define is that of an interior point of a set. This is a point which has a
neighborhood contained in the set.

Definition 1.9. (interior points) Given a set U C R™, a point ¢ € U is an interior point of U if
there exists v > 0 for which B(e,r) CU.

The set of all interior points of a given set U is called the interior of the set and is denoted by
int(U):

int(U) ={x €U : B(z,r) CU for some r > 0}

Definition 1.10. (open sets) An open set is a set that contains only interior points. In other
words, U C R™ is an open set if

for every x € U there exists v > 0 such that B(z,r) C U.

Definition 1.11. (closed sets) A set U C R™ is said to be closed if it contains all the limits of
convergent sequences of points in U: that is, U is closed if for every sequence of points {z;} C U
satisfying £; — * as i — oo, it holds that x* € U.

Definition 1.12. (closedness of level and contour sets of continuous functions) Let f be a contin-
wous function defined over a closed ser S CR™. Then for any a € R the sets

Lev(f,a) ={zx €S : f(x <a},
Con(f,a)={xe€S: flx =a}
are closed
Definition 1.13. (boundedness and compactness)
1. A set U CR" is called bounded if there exists M > 0 for which U C B(0, M).
2. A set U CR" is called compact if it is closed and bounded

Theorem 1.14. (Weierstrass theorem) Let f be a continuous function defined over a nonempty
and compact set C C R™. Then there exists a global minimum point of f over C and a global
mazimum point of f over C.

1.6 Convex Set in R"

Definition 1.15. (convex set) A set C C R™ is called convex if for any x,y € C and X € [0, 1], the
point Ax + (1 — N)y belongs to C

The above definition is equivalent to saying that for any z,y € C, the line segment [z,y] is also
in C. Examples of convex and nonconvex sets in R? are illustrated in the following figure. We will
now show some basic examples of convex sets.

Example 1.16. (conver sets) Let z € R", a € R"\ {0} and b € R. The following sets in R™ are
convex:



Figure 1.1: Convex and nonconvex sets

1. aline: L={z+1td:teR},

2. a hyperplane: H = {:l: cR":a'x = b},

8. a half-space: H = {z €ER":a"x < b},

4. an open half-space: H = {z € R" : a”z < b}.

Theorem 1.17. (preservation of convexity under intersection) Let Cq,Ca,...,Cyp C R™ be convex
sets, then the set NJX,C; is conves.

1.7 Differentiability
Let f be a function defined on a set S C R™; Let & € int(S) and let 0 # d € R™. If the limit

o L@+ 1)~ @)

t—0+ t

exists, then it is called the directional derivativce of f at x along the direction d and is denoted by
f'(z;d). For any i = 1,2,...,n, the directional derivative at = along the direction e; (the ith vector
in the standard basis) is called the ith partial derivative and is denoted by 2L (z):

5]
Bz,-
of .\ _ . fla+te)— f(z)
8Ii (fl?) n tg%l+ t

If all the partial derivatives of a function f exists at a point £ € R"™, then the gradient of f at x is
defined to be the column vector consisting of all the partial derivatives:

Vi) =



A function f is defined on an open set U C R" is called continuously differentiable over U if all the
partial derivatives exist and are continuous on U. The definition of continuous differentiability can
also be extended to nonopen sets by using the convention that a function f is said to be continuously
differentiable over a set C' if there exists an open set U containing C' on which the function is also
defined and continuously differentiable. In the setting of continuous differentiablity, we have the
following important formula for the directional derivative:

f'(z;d) = Vf(z)'d

for all z € U and d € R™. It can also be shown in this setting of continuous differentiability that
the following approximation result holds.

Proposition 1.18. Let f : U — R be defined on an open set U C R™. Suppose that f is continuously
differentiable over U. Then

o f@+d) ~ @) - Vi@)Td

=0 il U
lim id] forallx €

Another way to write the above result is as follows:

fly) = f(@) + V@) (y —2)+olly — =),

where o(-) : R — R is a one-dimensional function satisfying # — 0ast— 0T. A function f
defined on an open set U C R"™ is called twice continuously differentiable over U if all the second
order partial derivatives exist and are continuous over U. Under the assumption of twice continuous
differentiability, the second order partial derivatives are symmetric, meaning that for any i # j and
any x € U

0 f *f

8332»6%» r ijc’)xl

().

The Hessian if f ar a point £ € U is the n x n matrix

*f 9% f A*f
31:% (fL‘) Ox10xo (.’E) T 010z, ($)
3*f i
VQf(z) _ O0x2011 (.’L‘) 87:6%(:’:)
62f. a2f. 82f'
O0x,0x1 (z) O0x,0xo (.’II) T ox?2 (21)

where all the second order partial derivatives are evaluated at . Since f is twice continuously
differentiable over U, the Hessian matrix is symmetric. There are two main approximation results
(linear and quadratic) which are direct consequences of Taylor’s approximation theorem that will
be used frequently in the mini-course and are thus recalled here.

Theorem 1.19. (linear approzimation theorem) Let f : U — R be a twice continuously differen-
tiable function over an open set U C R™, and let x € U,r > 0 satisfy B(z,r) C U. Then for any
y € B(z,r), there exists £ € [z,y] such that

f(y) = @)+ V@)~ 2) + 5y~ 2) V) o).



Theorem 1.20. (quadratic approzimation theorem)Let f : U — R be a twice continuously differ-
entiable function over an open set U CR™, and let € U,r > 0 satisfy B(z,r) CU. Then for any
y € Bx,r),

fly) = f(@) + Vi) (y—z)+ %(y —2)"V2f(2)(y — z) +o(ly — ).

2 Optimality Conditions for Unconstrained Optimization

2.1 Global and Local Optima

Although our main interest in this section is to discuss minimum and maximum points of a function
over the entire space, we will nonetheless present the more general definition of global minimum
and maximum points of a function over a given set.

Definition 2.1. (global and minimum and mazimum) Let f : S — R be defined on a set S C R™.
Then

1. z* € S is called a global minimum point of f if f(x) > f(x*) for anyxz € S
2. x* € S is called a strict global minimum point of [ if f(x) > f(z*) for anyx #x* € S
3. x* € S is called a global maximum point of f if f(x) < f(x*) for anyxz € S
4. x* € S is called a strict global maximum point of f if f(x) < f(x*) for anyx £x* € S

The set S on which the optimization off is performed is also called the feasible set, and any
point € S is called a feasible solution. We will frequently omit the adjective ”global” and just
use the terminology "minimum point” and ”"maximum point.” It is also customary to refer to a
global minimum point as a minimizer or a global minimizer and to a global maximum point as a
maximizer or a global maximizer. A vector £* € S is called a global optimum of f over S if it is
either a global minimum or a global maximum. The mazimal value of f over S is defined as the
supremum off over S:

max{f(x):xz € S} =sup{f(z): xS}
Similarly the minimal value of f over S is the infimum of f over S,
min{f(z) :x € S} =inf{f(x) :z € S}

and is equal to f(z* when z* is a global minimum of f over S. Note that the maximum or minimum
may not be actually attained. As opposed to global maximum and minimum points, minimal and
maximal values are always unique. There could be several global minimum points, but there could
be only one minimal value. The set of all global minimizers o f f over S is denoted by

argmin{f(z):z € S}
and the set of all global maximizers of f over S is denoted by

argmax {f(z):x € S}



Example 2.2. Consider the two-dimensional function

r+y

f(iﬂ,y):m

defined over the entire space R?. The surface plot of the function are given in the following figure.
The function has two optima points: a global maximizer (x,y) = (%, \/Li) and a global minimizer

(z,y) = (—\/L§7 —\%) The mazimal value of the function is \L@ and the minimal value is _\/LE‘

Figure 2.1: Surface plots of f(z,y) =

z+y
r24+y2+1

Our main task will usually be to find and study global minimum or maximum points; however,
most of the theoretical results only characterize local minima and maxima which are optimal points
with respect to a neighborhood of the point of interest. The exact definitions follow.

Definition 2.3. (local minima and maxima) Let f : S — R be defined on a set S CR™. Then

1. * € S is called a local minimum point of f over S if there exists r > 0 for which
fl&*) < f(z) for any x € SN B(z*,r),

2. z* € S is called a strict local minimum point of f over S if there exists r > 0 for which
f@*) < f(x) for any x #2x* € SN B(z*,r),

3. z* € S is called a local maximum point of f over S if there exists r > 0 for which
f@*) > f(z) for any x € SN B(z*,r),

4. ¥ € S is called a strict local maximum point of f over S if there exists r > 0 for which
f@*) < f(z) for any x #x* € SN B(z*,r).

Of course, a global minimum (maximum) point is also a local minimum (maximum) point. As
with global minimum and maximum points, we will also use the terminology local minimizer and
local mazimizer for local minimum and maximum points, respectively.



Figure 2.2: Local and global optimum points of a one-dimensional function

2.2 First Order Optimality Condition

A well-known result is that for a one-dimensional function f defined and differentiable over an
interval (a,b), if a point 2* € (a,b) is a local maximum or minimum, thenf’(z*) = 0. This is also
known as Fermat’s theorem. The multidimensional extension of this result states that the gradient
is zero at local optimum points. We refer to such an optimality condition as a first order optimality
condition, as it is expressed in terms of the first order derivatives. In what follows, we will also
discuss second order optimality conditions that use in addition information on the second order
(partial) derivatives.

Theorem 2.4. (first order optimality condition for local optima points) Let f : U — R be a function
defined on a set U C R™. Suppose that X* € int(U) is a local optimum point and that all the partial
derivatives of f exist at x*. Then V f(z*) =0.

Proof. Let i € {1,2,...,n} and consider the one-dimensional function ¢g(t) = f(z* + te;). Note that
g is differentiable at ¢ = 0 and that ¢’(0) = g—i(m*). Since z* is a local optimum point of f, it
follows that ¢ = 0 is a local optimum of g, which immediately implies that ¢’(0) = 0. The latter is
exactly the same as g—f(a;*) = 0. Since this is true for any i € {1,2,...,n}, the result Vf(z*) =0

T4

follows =

Note that the proof of the first order optimality conditions for multivariate functions strongly
relies on the first order optimality conditions for one-dimensional functions. The theorem presents a
necessary optimality condition: the gradient vanishes at all local optimum points, which are interior
points of the domain of the function; however, the re- verse claim is not true-there could be points
which are not local optimum points, whose gradient is zero. For example, the derivative of the
one-dimensional function f(z) = 23 is zero at & = 0, but this point is neither a local minimum
nor a local maximum. Since points in which the gradient vanishes are the only candidates for local
optima among the points in the interior of the domain of the function, they deserve an explicit
definition.

10



Definition 2.5. (stationary points) Let f : U — R be a function defined on a set U C R™. Suppose
that x* € int(U) and that f is differentiable over some neighborhood of €*. Then x* is called a
stationary point of f if Vf(z*) =0.

Thus, local optimum points are necessarily stationary points.

2.3 Second Order Optimality Conditions
Recall the criterion of local optimum for one-dimensional twice continuous differentiable function
f(@):

1. if f/(z*) =0 and f”(x) > 0, then z* is a local minimizer.

2. if f/(z*) =0 and f’(z) <0, then x* is a local minimizer.

This motivates us to consider the exntension of the second order derivative characterization of
optimum criterion. Essentially we have the following theorem.

Theorem 2.6. Let f : U — R be a function defined on an open set U C R™. Suppose that f is
twice continuously differentiable over Uand that &* is a stationary point. Then the following hold:

1. If x* is a local minimum point of f over U, then V2f(z*) = 0,
2. If zx is a local maximum point of f over U, then V2 f(x*) < 0,
3. If V2f(x*) = 0, then z* is a local minimum point of f over U,
4. If V2f(x*) < 0, then x* is a local minimum point of f over U,

Intuitively, to be a local minimum, there should not be any descending direction when starting
from the minimizer around a neighborhood. The subtle difference between > and > emerges when
one applies the second order approximation to prove the theorem. Meanwhile we have another way
to guarantee the sufficiency of optimum with a stronger condition:

Theorem 2.7. Let f be a twice continuously differentiable function defined over R™. Suppose that
V2f(xz) > 0 for any x € R™. Let £* Rn be a stationary point of f. Then x* is a global minimum
point of f.

3 Convex Function

3.1 Definition and Examples

Definition 3.1. (convez functions) A function f: C — R defined on a convex set C C R™ is called
conver (or convex over C) if

fO&+ (1 =Ny) <Af(2) + (1= A)f(y) for any z,y € C,A € [0,1] (1)

The fundamental inequality 1 is illustrated in the following figure.

In case when no domain is specified, then we naturally assume that f is defined over the entire
space R™. If we do not allow equality in 1 when x # y and X\ € (0,1), the function is called strictly
convex.

11
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Figure 3.1: Tllustration of inequality f(Az 4+ (1 — Ny) < Af(z)+ (1 —N\)f(y)

Definition 3.2. (strictly convex functions) A function f : C'— R defined on a convext set C C R"
1s called strictly convex if

fOz+ 1 =Ny <Af(@)+ (1 =N f(y) foranyx #y e C, A€ (0,1)

Another important concept is concavity. A function is called concave if — f is convex. Similarly,
f is called strictly concave if — f is strictly convex. We can of course write a more direct definition
of concavity based on the definition of convexity. A function f is concave if and only if for any
z,y € C and X € [0,1] we have

fOz+(1=Ny) = Af(z)+(1-A)f(y)

Equipped only with the definition of convexity, we can give some elementary examples of convex
functions. We begin by showing the convexity of affine functions, which are functions of the form
f(z) =a’z + b, where a € R™ and b € R. (If b = 0, then f is also called linear.)

Example 3.3. (convezity of affine functions) Let f(x = a”x + b, where a € R™ and b € R. To
show that f is convez, take z,y € R™ and A € [0,1]. Then

fOz+1=Ny)=a" Oz +(1-Ny)+0
= Xa"z) + (1 - N)(a"y) + Ao+ (1 = \)b
=XaTz+b)+ (1 -N)(a"y +)
=M@)+ (1 -ANf(y)

and thus in particular f(Ax + (1 — N)y) < Af(x) + (1 — N f(y), and convezity follows. Meanwhile,
it is also trivial that affine functions are both convexr and concave. |

The basic property characterizing a convex function is that the function value of a convex
combination of two points x and y is smaller than or equal to the corresponding convex combination
of the function values f(z) and f(y). An interesting result is that convexity implies that this
property can be generalized to convex combinations of any number of vectors. This is the so-called
Jensen’s inequality.

12



Theorem 3.4. (Jensen’s inequality) Let f : C — R be a convex function where C' C R™ is a convex
set. Then for any x1,%3,....,&, € C and A € Ay, the following inequality holds:

k
z:)\.'z:z SZ (2)

Proof. We will prove the inequality by induction on k. For k = 1 the result is obvious (it amounts to
f(x1) < f(z1) for any 1 € C). The induction hypothesis is that for any k vectors &1, zo, ...,x; € C
and any A € Ag, the inequality 2 holds. We will now prove the theorem for k + 1 vectors. Suppose
that @1,22,...,2x+1 € C and that A € Agy1. We will show that f(z) < Zk+1 Aif(z;), where

z =Y Ny If Ay = 1, then z = 24, and 2 is obvious. If g4y < 1, then
k+1
= f(z i)
=1
k

= f(z NTi + Ay 1Zp41)
i1
k

i
= f((1 = Ary1) Z ﬁl‘z F e 1Thy1)

v

< (1= A1 f () + A1 f(@rtr).

. k 1-X . . . .
Since ), = ﬁ, it follows that v is a convex combination of k points from C, and hence

by the induction hypothesis we have that f(v) < Zle 1—?\7“1 f(z;), which combined with the
ineuqality above yields

k+1

z) < Z Aifi(®;)

3.2 First Order Characterization of Convex Functions

Convex functions are not necessarily differentiable, but in case they are, we can replace the Jensen’s
inequality definition with other characterizations which utilize the gradient of the function. An
important characterizing inequality is the gradient inequality, which essentially states that the
tangent hyperplanes of convex functions are always underestimates of the function.

Theorem 3.5. (the gradient inequality) Let f : C — R b e a continuously differentiable function
defined on a convex set C C R™. Then f is comvex over C' if and only if

f@)+ V@) (y—=z) < fly) for any z,y € C. (3)

Proof. Suppose that f is convex. Let ¢,y € C and X € (0,1]. If x =y, then 3 trivially holds. We
will therefore assume that  # y. Then

FOy+ (1 =Nz) < Af(y) + (1 =N f(@),

13



and hence

Taking A — 07, the left-hand side converges to the directional derivative of f at z in the direction
Yy — x, so that

fl@y—=2) < fly) - f=)

Since f is continuously differentiable, it follows that f'(z,y —z) = Vf(z)?(y — z), and hence 2
follows. To prove the reverse direction, assume that the gradient inequality holds. Let z, w € C, and
let A € (0,1). We will show that f(Az+(1—XNw) < Af(z)+(1—-N\)f(w). Letu = Az+(1-Nw € C.
Then

u—(1-Nw 1=
z—u= 5 U= (w —u).

Invoking the gradient inequality on the pairs z,u and w,u, we obtain
flu) + Vi)' (z —u) <f(2),
Flu) — T2 V@) (5~ w) <fuw)
Multiplying the first inequality by ﬁ and adding it to the second one, we obtain

) < 5 5G) + ),

which after multiplication by 1 — A\ amounts to the desired inequality

fu) S Af(z) + (1 =N f(w).
|

Geometrically, the gradient inequality essentially states that for convex functions, the tangent
hyperplane is below the surface of the function. A two-dimensional illustration is given in the
following figure. A direct result of the gradient inequality is that the first order optimality condition
V f(z*) = 0 is sufficient for global optimality.

Proposition 3.6. (sufficiency of stationary) Let [ be a continuously differentiable function which

is convex over a conver set C C R™. Suppose that V f(x*) = 0 for some x* € C. Then x* is a
global minimizer of f over C.

Proof. Let z € C. Plugging £ = * and y = z in the gradient inequality 3, we obtain that
f(2) 2 f(z*) + V()" (z —2"),

which by the fact that V f(z*) = 0 implies that f(z) > f(z*), thus establishing that z* is the global
minimizer of f over C. |

We note that the above proposition establishes only the sufficiency of the stationarity condition
V f(z*) = 0 for guaranteeing that 2* is a global optimal solution. There could be some cases that
the global minimizer does not satisfy the assumption (e.g. corner solution in a closed set). When C
is not the entire space, this condition is not necessary. However, on most occasions of our interest
(e.g. C = R"™) this is not the case. Analogously, the same logic applies to the sufficiency
of stationarity for guaranteeing a global maximizer when the function is concave.
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Figure 3.2: The function f(x,y) = 2? + y? and its tangent hyperplane at (1,1), which is a lower
bound of the function’s surface.

3.3 Second Order Characterization of Convex Functions

When the function is twice continuously differentiable, convexity can be characterized by the pos-
itive semidefiniteness of the Hessian matrix.

Theorem 3.7. (second order characterization of convexity) Let f be a twice continuously differ-
entiable function over an open convex set C C R™. Then f is convex if and only if V2 f(x) = 0 for
anyx € C.

Proof. Suppose that V2f(z = 0 for all z € C. We will prove the gradient inequality, which
by Theorem 3.5 is enough in order to establish convexity. Let z,y € C. Then by the linear
approximation theorem we have that there exists z € [z,y] (and hence z € C') for which

f@)=f@)+Vi@) y—=z)+s04—2)"'Vf(2)" y—=z) (4)

Since Vf(z) = 0, it follows that (y — z)TV?f(2)T(y — ) > 0, and hence by 4, the inequality
fy) = f(@) + Vf(z)"(y —z) holds.

To prove the opposite direction, assume that f is convex over C. Let & € C' and let y € R™. Since
C' is open, it follows that £ + Ay € C for 0 < X < ¢, where € is a small enough positive number.
Invoking the gradient inequality we have

f@+My—f(x) + AV f(z)"y

In addition, by the quadratic approximation theorem we have that

| —

2
flo+29) = (@) + AV (@) Ty + Sy @)y + o y]?)

Combine the two inequalities above we will have
2
Y VA (@)y +o(N[ly]*) = 0

15



for any A € (0,¢). Dividing the latter inequality by A? and taking A — 07, we conclude that
y ' Vif(zy =0

for any y € R, implying that V2 f(z) 3= 0 for any z € C. [ |

3.4 Operations Preserving Convexity

There are several important operations that preserve the convexity property. First, the sum of
convex functions is a convex function and a multiplication of a convex function by a nonnegative
number results with a convex function.

Theorem 3.8. (preservation of convexity under summation and multiplication by nonnegative
scalars)

1. Let f be a convez function defined over a conver set C C R™ and let o« > 0. Then af is a
convex function over C.

2. Let fi, fa,..., fp be convex functions over a conver set C' C R™. Then the sum function
fi+ fo+ -+ fp is convex over C

Theorem 3.9. (preservation of convexity under composition with a nondecreasing convez function,)
Ler f : C — R be a convex function over the convex set C C R™. Let g: I — R be a one-dimensional
nondecreasing convex function over the interval I C R. Assume that the image of C under f is
contained in I: f(C) C I. Then the composition of g with f defined by

h(z) =g(f(z)), ze€C
is a convex function over C.

Exercise 3.10. Write the analogous theorem of 3.9 for concave functions.

4 The KKT Conditions

In this section, we finally arrive at Karush-Kuhn-Tucker (KKT) conditions that underlie the com-
mon solution to constrained optimization problem. The preassumptions of applying the conditions
vary, and in this note we pay attention to a very special case that is frequently met in economics
studies and whose validity is easily proved. After stating and proving the theorem in a rather
comprehensive setup, some intuition is provided and one example of practice follows.

4.1 Constrained optimization problems

Theorem 4.1. (sufficiency of the KKT conditions for concave optimization problems) Let * be a
feasible solution of the problem



where f,g1,...,gm are continuously differentiable concave functions over R™ and hq,hs, ..., h, are
afffine functions. Suppose that there exist multipliers Ay, Ao, ..., A\, > 0 and py, pa, ..., ptp € R such
that

V") + Z AiVgi(z*) + Zﬂthi(x*) —0,
=1 j=1
)\igi(z*) =0,t=1,2,....m

Then x* is an optimal solution of the problem.

Proof. Let z be a feasible solution of the problem. We will show that f(z*) > f(z). Note that the
function

(@) = @)+ Y @) + Y i o)

is concave, and since Vs(z*) = Vf(z*) + 372 \iVgi(e*) + 3°7_, 1;Vhi(*) = 0, it follows by
Proposition 3.6 that z* is a maximizer of s(-) over R”, and in particular s(z*) > s(z). We can thus
conclude that

F@') = F@) + Y Niaita) + Y pihi(a)
= s(z")
> s(z)

F@)+> Xigi(@) + Y pihj()
i=1 =1
> f(=z)

4.2 Example: GDP and price index

The concept of GDP is usually the content of the first class in macroeconomics. It is the summation
of value added across all industries. As apples and bananas cannot be directly added up, we firstly
transform them into monetary terms and then calculate the summation of these numbers. By doing
so we obtain the nominal GDP of the economy, which is usually accompanied with a price index
to help tease out the impact of purely price change. The following practice help establish a link
between the math we have learned and this daily economic concepts. We restrict our attention
to a specific topic i.e. we simplify the real world economy, to consider only consumption over a
range of different goods in a representative agent world. Let z1, 2o, ...., xy denote the consumption
amount of N various goods with prices being respectively p;. The total income of the consumer
is M. Then the agent allocates its consumption by solving the following constrained optimization
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problem (termed wutility mazimization problem in economics):

maxU(x1, %2, ..., TN)
N
such that Zpixi =M

i=1
U(zy,xo,...,2n), a concave function (to get rid of the sufficiency of optimum), is called wutility
function in microeconomics, while in macroeconomics it is also sometimes called aggregator, as it
aggregates consumption over all goods to generate utility, and, with a bit of craziness at a first
glance, we can directly treat it as GDP! To see this, we firstly impose a reasonable assumption on
the aggregator function.

Definition 4.2. (homogeneous function) A function f : C — R defined on a convex hull C C R"
is called homogeneous of degree k (k € N) if for any A > 0 we have

fOz) =\ f(2)

We assume that the aggregator function is homogeneous of degree 1, which is also usually
called constant return to scale in economics. And we will also utilize the following properties of
homogenous function:

Theorem 4.3. (Euler’s homogeneous function theorem) Let f : C — R where C C R"™ be a
continuously differentiable function homogeneous of degree k, then we have

- 0
kf(z1, 22, ....xn) = inai

i=1

Now let’s follow the regular procedures of constrained optimization. Firstly, we establish a
Lagrangian function with A\ being the Lagrangian multiplier for the only constriant:

L\ z)=U(z)+ \(M — Zpiwi)

Then, we derive the first order condition (FOC) for the function:

ou
65(}7;

We have N such conditions, and we combine them with the constraint to form a system of equations,
from which we could solve out exactly N + 1 variables: x;’s and A\. Even before plugging in the
specific functional form, we could treat the FOC with some tricks: multiplying each side by «;, and
sum all the N FOCs up we have

=Ap; fori=1,2... N

N

oU a
in 0z, /\;pixi

i=1

For the left hand side (LHS) of equation, we apply Euler’s homogeneous function theorem. For the
right hand side (RHS) of equation, we apply the constraint. Combine them together we will have

U=\M

18



Note that M is the total income. We can imagine a simplified case where the economy has only
one homogeneous good and consumers spend all income to consume that good. In such a world, it
is easy to calculate GDP and inflation, and this imagination is represented mathematically by the
equation above, if we treat U as the consumption amount of the ”final good”, and A the inverse of
the price of the good. In state-of-the-art economics researches on multiple sector economy, this is
exactly the case. \ is exactly the inverse of price index to dictate the change in prices. This will
be more clear if we have a specific functional form and derive A as a function of all prices.

Example 4.4. Calculate the constrained optimization result above with following specific functional
forms of U:

1. Uz, 20) = a§as™

2. Ulzy,12) = (2% + 23>
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